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The quantum mechanics of affine variables
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Abstract

We present a quantum-mechanical model for S-duality symmetries observed in the quantum
theories of fields, strings and branes. Our formalism may be understood as the topological limit of
Berezin’s metric quantisation of the upper half-planeH, in that the metric dependence of Berezin’s
method has been removed. Being metric-free, our prescription makes no use of global quantum
numbers. Quantum numbers arise only locally, after the choice of a local vacuum to expand around.
Our approach may be regarded as a manifestly non-perturbative formulation of quantum mechanics,
in that we take no classical phase space and no Poisson brackets as a starting point. The resulting
quantum mechanics turns out to be that of the affine variables of quantum gravity. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Overview

1.1. Setup

The concept ofduality plays a key role in recent important developments in the quantum
theories of fields [1], string duality [2], M-theory and branes [3], M(atrix) theory [4], and the
AdS/CFT correspondence [5]. Broadly speaking, under duality one understands a transfor-
mation of a given field or string theory, in a certain regime of the variables and parameters
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that define it, into a physically equivalent theory with different variables and parameters.
The theories thus mapped into each other may be of apparently very different nature — e.g.,
the duality may exchange a field theory with a string theory. Alternatively, the duality may
exchange the strong-coupling regime of a given theory with the perturbative regime of its
dual theory, thus making the former more tractable. This latter form of mapping different
theories goes under the name of S-duality. Often, what appears to be a highly non-trivial
quantum excitation in a given field or string theory may well turn out to be a simple per-
turbative correction from the viewpoint of a theory dual to the original one. This suggests
that what constitutes a quantum correction may be a matter of convention: the notion of
classical versusquantum is relative to which theory the measurement is made from.

In view of these developments, Vafa [6] and other authors have suggested that quantum
mechanics itself may need a revision if it is to accommodate, already from first principles,
the notion of duality.

This state of affairs is reminiscent of general relativity. In fact a very interesting deriva-
tion of quantum mechanics from an equivalence principle has been given in [7,8]. In this
formulation, conformal symmetry plays a key role.

Conformal quantum mechanics, as initiated in [9] and later supersymmetrised in [10],
has also been the subject of renewed interest in connection with multi-black hole quantum
mechanics (see [11,12] for extensive references).

1.2. Summary

Motivated by the above considerations, in this paper we develop a quantum mechanics
that naturally incorporates a simple form of S-duality. The latter will be modelled on the con-
formal transformation of a complex variablez → −z−1. Due to the presence of conformal
symmetry, our formalism may also be understood as the appropriate quantum mechanics
for the affine variables of quantum gravity, where the affine algebra plays a significant role
[13,14]. The generator of translations is represented by an operator with strictly positive
spectrum. A similar feature will appear in our formalism in Section 3. When generalising
the one-dimensional affine algebra to several dimensions [15], the generator of translations
becomes a symmetric, positive-definite matrix degree of freedom. Such an object is well
suited to describe the spatial part of the metric tensor. The coherent-state representation of
the one-dimensional affine algebra has been studied in [16,17], and it has been generalised
to several dimensions in [18].

The presence of conformal symmetry suggests considering a variable defined on
Poincaré’s upper half-planeH. On the latter there exists theholomorphic Fourier transfor-
mation (HFT), which we intend to use as a technical tool for quantising an affine variable.
The HFT relates a real co-ordinate onR to a complex momentum onH. Alternatively, a
real momentum can be HFT-transformed into a complex co-ordinate onH. Position and
momentum operators satisfying the Heisenberg algebra will be defined as dictated by the
HFT. The Hilbert space of states will be identified explicitly. It will turn out to be larger
than the standardL2(R) Hilbert space, as a consequence of the non-perturbative nature of
our quantisation. We will explain how it eventually reduces to the usualL2(R). The wave
function onR will be the restriction to the boundary of a holomorphic wave function whose
natural domain will beH. However, the quantum-mechanical operatorZ corresponding to
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the classical variablez ∈ H will not be self-adjoint, so its physical interpretation requires
some care. One can nonetheless make sense out of a non-self-adjoint operatorZ. This is
based on the fact thatZ2 admits a self-adjoint Friedrichs extension, whose square root is
now self-adjoint.

Our formalism may be understood as a certain limit of Berezin’s quantisation [19–22].
The latter relies on the metric properties of classical phase spaceM, wheneverM is
a homogeneous Kähler manifold [23,24]. In Berezin’s method, quantum numbers arise
naturally from the metric onM. The semiclassical regime is then identified with the regime
of large quantum numbers. Our method may be regarded as the topological limit of Berezin’s
quantisation, in that the metric dependence has been removed. Topological gravity has in
fact a long history [25]. As a consequence of this topological nature our quantisation exhibits
some added features. Quantum numbers are not originally present in our prescription; they
appear only after a vacuum has been chosen, and even then they are local in nature, instead of
global. Hence our procedure may be thought of as a manifestly non-perturbative formulation
of quantum mechanics, in that we take no classical phase space and no Poisson brackets as
our starting point, i.e., we do not deform a classical theory into its quantum counterpart, as
in deformation quantisation [26–34].

On the upper half-planeH there is an isometric action of the groupSL(2,R). Berezin’s
metric method, applied toH, yields a Hilbert space of statesH that provides a repre-
sentation space forSL(2,R). However, our approach makes no use of the metric proper-
ties of H. Correspondingly, we have no representation ofSL(2,R) as a Hilbert space of
states. Also in this sense our quantisation is topological, as opposed to Berezin’s metric
approach.

1.3. Outline

This article is organised as follows. The HFT is presented in technical detail in Section 2.
Section 3 develops a quantum mechanics based on the HFT. Special emphasis is placed on
a technical analysis of the spectral properties of operators. Section 4 is devoted to a physical
interpretation of our formalism. We discuss why the non-isospectrality of the HFT allows
for non-trivial dualities that are necessarily absent in the context of Schrödinger pairs, as in
standard quantum mechanics. We also explain the physical meaning of the non-self-adjoint
operatorZ, the choice of a vacuum and the breaking ofSL(2,R) to the affine group of
quantum gravity, as well as the topological character of this quantum mechanics. Using an
SL(2,R) action on the operators, we exhibit how to implement an S-duality between strong
quantum effects and semiclassical corrections in our framework. Finally, in Section 5 we
make some closing comments.

2. The holomorphic Fourier transformation (HFT)

By analogy with Berezin’s quantisation [19–24], we need a space of analytic functions
on the upper half-planeH as our Hilbert space of statesH. A key observation is that the
holomorphic Fourier transformation, summarised below, provides such a space in a natural
way [35–37].
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Let Fψ ∈ L2(0,∞). Forz = x + iy ∈ H, the functionψ is defined as

ψ(z) = 1√
2π

∫ ∞

0
dt Fψ(t)eitz, (1)

the integral understood in the sense of Lebesgue, is holomorphic onH. Its restrictions to
horizontal straight linesy = const. > 0 in H are a bounded set inL2(R).

Conversely, letψ be holomorphic onH, and assume that

sup
0<y<∞

∫ ∞

−∞
dx|ψ(x + iy)|2 = C < ∞. (2)

Then the functionFψ is defined by

Fψ(t) = 1√
2π

∫ ∞

−∞
dz ψ(z)e−itz, (3)

the integration being along any horizontal straight liney = const. > 0 in H satisfies
the following basic properties.Fψ(t) is independent of the particular horizontal liney =
const. > 0 chosen. Moreover,Fψ ∈ L2(0,∞), and for anyz ∈ H, Eq. (1) holds, with∫ ∞

0
dt |Fψ(t)|2 = C. (4)

We callFψ the holomorphic Fourier transform ofψ .
Some features of the HFT onH are worth mentioning. LetΩ(H) denote the space of all

holomorphic functions onH, and letΩ0(H) denote the proper subspace of allψ ∈ Ω(H)
such that the supremumC introduced in (2) is finite. ThenC defines a squared norm‖ψ‖2

onΩ0(H). The subspaceΩ0(H) is complete with respect to this norm. This norm is Hilbert,
i.e., it verifies the parallelogram identity. Hence the scalar product〈ϕ|ψ〉 defined onΩ0(H)
through

4〈ϕ|ψ〉 = ‖ψ + ϕ‖2 − ‖ψ − ϕ‖2 + i‖ψ + iϕ‖2 − i‖ψ − iϕ‖2 (5)

turns the complete normed spaceΩ0(H) into a Hilbert space with respect to the scalar
product (5). In fact, via the HFT, the subspaceΩ0(H) is isometrically isomorphic to the
Hilbert spaceL2(0,∞).

3. Quantum mechanics from the HFT

3.1. The space of quantum states

Section 2 allows us to identify the Hilbert space of statesH of our quantum mechanics.
In the representation in which the wave function isFψ(t) we haveH = L2(0,∞), while
in its HFT-transformed representationψ(z) we haveH = Ω0(H). After the choice of a
vacuum in Section 4.2 and the introduction of the boundary wave function in Section 4.3,
we will see the emergence of the usual Hilbert spaceL2(R).
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For definiteness, we choose the complex variablez ∈ H to stand for the momentump,
with the real variablet ∈ (0,∞) standing for the co-ordinateq. Then the HFT reads

ψ(p) = 1√
2π�

∫ ∞

0
dq Fψ(q)e(i/�)qp, Fψ(q)= 1√

2π�

∫ ∞

−∞
dpψ(p)e−(i/�)qp. (6)

3.2. Position and momentum

In co-ordinate representation, we define position and momentum operatorsQ andP :

(QFψ)(q) = qFψ(q), (PFψ)(q) = i�
dFψ
dq

. (7)

Eq. (6) implies that their momentum representation is

(Qψ)(p) = −i�
dψ

dp
, (Pψ)(p) = pψ(p). (8)

Irrespective of the representation chosen we have the Heisenberg algebra

[P,Q] = i� 1. (9)

On the domain

D(Q) =
{
Fψ ∈ L2(0,∞) :

∫ ∞

0
dq q2|Fψ(q)|2 < ∞

}
, (10)

which is dense inH, the operatorQ is symmetric,

〈Fψ |Q|Fϕ〉∗ = 〈Fϕ |Q|Fψ 〉. (11)

A closed, symmetric, densely defined operator admits a self-adjoint extension if and only if
its defect indicesd± are equal. Moreover, such an operator is essentially self-adjoint if and
only if its defect indices are both zero [35–37]. The operatorQ turns out to be essentially
self-adjoint, with point, residual and continuous spectra given by

σp(Q) = ∅, σr(Q) = ∅, σc(Q) = [0,∞). (12)

The properties of the momentum operatorP are subtler. One finds

〈Fψ |P |Fϕ〉∗ = i�Fψ(0)F
∗
ϕ (0)+ 〈Fϕ |P |Fψ 〉, (13)

soP is symmetric on the domain

D(P ) =
{
Fψ ∈ L2(0,∞) : Fψ abs. cont.,

∫ ∞

0
dq

∣∣∣∣dFψ
dq

∣∣∣∣
2

<∞, Fψ(0) = 0

}
(14)

(Fψ is absolutely continuous). The adjointP† also acts as i�(d/dq), with a domainD(P†):

D(P†) =
{
Fψ ∈ L2(0,∞) : Fψ abs. cont.,

∫ ∞

0
dq

∣∣∣∣dFψ
dq

∣∣∣∣
2

< ∞
}
, (15)
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where the boundary conditionFψ(0) = 0 has been lifted. On the spaceL2(0,∞) we have
d+(P ) = 0, d−(P ) = 1. We conclude thatP admits no self-adjoint extension. Its point,
residual and continuous spectra are

σp(P ) = ∅, σr(P ) = H ∪ R, σc(P ) = ∅. (16)

The domainD(P ) is strictly contained inD(P†). This implies that the operatorsPx =
1
2(P + P†) andPy = (P − P†)/2i which one would naively construct out ofP are
ill defined. There is no way to define self-adjoint operatorsPx andPy corresponding to
the classical momentapx andpy . This is compatible with the fact that the defect indices
of P being unequal,P does not commute with any complex conjugation onH [35–37].
However, we will see presently that one can make perfectly good sense of a quantum
mechanics whose momentum operatorP admits no self-adjoint extension. We defer issues
like measurements ofP and Heisenberg’s uncertainty principle until Section 4.2. Quadratic
terms inP are technically simpler, and will be dealt with first.

With our choice of domainD(P ), which makesP symmetric,P 2 is also symmetric.
One proves thatd−(P 2) = 1 = d+(P 2). HenceP 2, although not essentially self-adjoint,
admits a self-adjoint extension. A popular choice is the Friedrichs extension [35–37]. Given
an operatorA, this extension is characterised by a boundedness condition

〈ϕ|A|ϕ〉 ≥ −α‖ϕ‖2 ∀ϕ ∈ D(A) (17)

for a certainα ≥ 0. Now the operatorP 2 admits a Friedrichs extensionP 2
F with a lower

boundα = 0:

〈Fϕ |P 2
F |Fϕ〉 ≥ 0 ∀Fϕ ∈ D(P 2

F ). (18)

The point, residual and continuous spectra of this extension are

σp(P
2
F ) = ∅, σr(P

2
F ) = ∅, σc(P

2
F ) = [0,∞). (19)

Now the crucial point is that the square root of the Friedrichs extension allows us to
define a self-adjoint momentum operator. Let us define the new operatorP√

P√ =
√
P 2

F . (20)

P√ is self-adjoint, with a domainD(P√ ) uniquely determined by the spectral decomposi-
tion of P [35–37]. The point, residual and continuos spectra ofP√ are

σp(P√ ) = ∅, σr(P√ ) = ∅, σc(P√ ) = [0,∞). (21)

We observe that taking the Friedrichs extension does not commute with the square root.
The operatorP√ enjoys the properties of being linear inp and having the right commutator
(9) with the position operator.

3.3. SL(2,R)-Transformation of the operators

We can reparametrise the co-ordinatez ∈ H by means of a Möbius transformationz →
z̃ = (az + b)(cz + d)−1, with ad − bc = 1. We now consider the HFT
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written as

ψ̃(p̃) = 1√
2π�

∫ ∞

0
dq̃ F̃ψ̃ (q̃)e(i/�)q̃p̃ F̃ψ̃ (q̃) = 1√

2π�

∫ ∞

−∞
dp̃ ψ̃(p̃)e−(i/�)q̃p̃,

(22)

whereq̃ ∈ (0,∞) is the variable dual tõp under (22). One can define co-ordinate and mo-
mentum operators̃Q andP̃ satisfying the Heisenberg algebra (9). Hence this is a canonical
transformation from(q, p) to (q̃, p̃). The transformed operators̃Q andP̃ have the same
spectra as before.

4. Discussion

4.1. Non-isospectrality of the HFT

The standard Fourier transformation maps (a subspace of)L2(R) into (a subspace of)
L2(R). It is also an isospectral transformation between self-adjoint operators. In the context
of the standard Fourier transformation onL2(R), co-ordinate and momentum are sometimes
referred to as aSchrödinger pair.

On the contrary, the HFT is not an isospectral transformation;Q andP do not have
identical spectra. Furthermore, the very choice of the dynamical variable to be represented
by complex variablez of the HFT is a non-trivial choice in itself. These properties allow
for non-trivial dualities that are necessarily absent in the context of Schrödinger pairs.

4.2. The choice of a local vacuum

The difficulties due to the fact that one of the two canonical operators(Q, P ) admits no
self-adjoint extension can be overcome bythe choice of a vacuum to expand around. Under
the latter we understand the choice of eitherz or z̃ = −z−1 as the classical co-ordinate on
H to be quantised into the operatorZ or Z̃ = −Z−1. After the choice of a vacuum, the
SL(2,R) symmetry is reduced to translations and dilatations, leaving the affine group only.

For definiteness, let us choose the vacuum corresponding to the classical variablez, in
the picture in which the quantum operatorZ is the momentumP . Then the construction
of Section 3 leads to a pair of self-adjoint operators(Q, P√ ). They are almost canonically
conjugated in the sense that while satisfying the Heisenberg algebra (9), the exchange
between co-ordinate and momentum is not performed directly at the level of(Q, P√ ) by
means of the usual Fourier transformation. Rather,(Q, P√ ) have to be lifted back to their
HFT ancestors(Q, P ) in order to exchange them. Apart from this technicality, the operators
(Q, P√ ) meet the usual quantum-mechanical requirements concerning the measurement
process and the Heisenberg uncertainty principle. The vacuum|0z〉, and the corresponding
local quantum numbersnz obtained upon expansion around it, will certainly differ from the
vacuum|0z̃〉 and the quantum numbersnz̃ obtained from the classical variablez̃ = −z−1. So
this choice of a vacuum islocal in nature, in that it is linked to a specific choice of co-ordinate.
The coherent states constructed around|0z〉 are not coherent from the viewpoint of|0z̃〉. We
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conclude that this quantum mechanics does not allow for globally defined coherent states
such as those of Berezin’s quantisation.

This choice of a vacuum is reminiscent of M-theory and the (perturbatively) different
string theories it unifies [2,3]. The eleventh dimension of M-theory, as opposed to the 10
critical dimensions of the type IIA string appears in the passage to the strong-coupling
limit. In doing so, one succeeds in incorporating the known dualities between different
perturbative strings. In our context, the HFT canonically relates the two real dimensions of
the upper half-planeH to the one real dimension of the real axisR. The extra dimension
present in the HFT disappears once a vacuum has been chosen through the self-adjoint
operatorP√ .

4.3. The wave function on the boundary

After a vacuum has been chosen, the connection with standard quantum mechanics can be
made more explicit by exhibiting the usual Hilbert spaceL2(R) emerge from our approach
as follows. Let us consider the picture (dual to that of Section 3) in which the complex
variablez is the co-ordinateq. For a holomorphic wave functionψ(q) = ψ(x + iy)
satisfying condition (2), a boundary wave functionψb(x) ∈ L2(R) exists such that [35–37]

lim
y→0

∫ ∞

−∞
dx|ψ(x + iy)− ψb(x)|2 = 0. (23)

So while the requirement ofL2-integrability of standard quantum mechanics is maintained,
the HFT extends the wave functionψb(x) ∈ L2(R) of a particle on the boundary ofH to a
holomorphicψ(q) defined on the entire upper half-plane.

4.4. A topological quantum mechanics

Berezin’s quantisation relied heavily on the metric properties of classical phase space.
The semiclassical limit could be defined as the regime of large quantum numbers. The very
existence of quantum numbers was a consequence of the metric structure.

On the contrary, the quantum mechanics developed here is completely independent of the
metric properties of the upper half-planeH. Quantisation in terms of the HFT istopological,
in that it does not know about the Poincaré metric ds2 = (dx2+dy2)/y2. Indeed, the absence
of a metric prevents us from writing an integration measure as in Berezin’s quantisation.
The supremum in Eq. (2) reflects this fact. Along any horizontal liney = const. > 0 one
effectively observes a constant Euclidean metric; in order to detect the negative curvature of
the Poincaré metric one needs to displace alongy. The HFT correctly captures this property.
Furthermore, a “thickening” of the real lineR to the upper half-planeH should not feel the
presence of the Poincaré metric onH, if it is to describe quantum mechanics onR. This is
compatible with the interpretation of the wave function given in Section 4.3.

We therefore have a quantum mechanics that is free ofglobal quantum numbers. The latter
appear only after the choice of alocal vacuum. The logic could be summarised as follows:

1. The fact that this quantum mechanics is topological implies the absence of a metric.
2. The absence of a metric implies the absence of global quantum numbers.
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3. The absence of global quantum numbers implies the impossibility of globally defining
a semiclassical regime. The latter exists only locally.

Actually, as our starting point we have no classical phase space at all, and no Poisson brack-
ets to quantise into commutators. This may be regarded as a manifestly non-perturbative
formulation of quantum mechanics, as required in [6]. The sections that follow elaborate
on this point further.

4.5. Classical vs. quantum

Next we state a proposal to accommodate a simple form of S-duality into our framework.
To be concrete, we assume that the required duality isSL(2,R). In fact this group (or
subgroups thereof) is ubiquitous in field and string duality. From the HFT we have developed
a quantum mechanics that is conceptually as close as possible to the standard one, while at the
same time incorporating the desired duality. By this we do not mean having a representation
of SL(2,R) as the Hilbert space of states. In fact, Berezin’s quantisation does precisely that
[19–22]. Rather, we have implemented a particularly relevantSL(2,R) transformation,
the inversionz → z̃ = −z−1, on the quantum operatorZ corresponding to the classical
variablez. If Z is taken to represent the momentumP , the effect is that of transforming
Planck’s constant as�→ −�−1. This can be interpreted as an exchange of the semiclassical
with the strong quantum regime. In this context,� is best thought of as a dimensionless
deformation parameter, as in deformation quantisation [26–34]. This duality symmetry is
not implemented in ordinary quantum mechanics.

The quantum mechanics based on the HFT naturally incorporates this duality under a
single theory. Different limits of the latter yield different regimes. Let us start from the
classical variablez ∈ H and choose the corresponding non-self-adjoint quantum operator
Z to be the momentumP . We can compute quantum effects to O(�), which one would
call semiclassicalfrom the viewpoint of the quantum theory corresponding to the classical
variable z. Strong quantum effects, that will be of O(−�−1) from the viewpoint of the
original theory, will appear to be simple semiclassical corrections of O(�) from the viewpoint
of the dual quantum theory corresponding to the classical variable z̃ = −z−1.

5. Concluding remarks

In this article, we have tried an approach to quantum mechanics that is not primarily based
on the quantisation of a given classical dynamics. In such an approach one does not take a
classical theory as a starting point. Rather, quantum mechanics itself is more fundamental,
in that its classical limit or limits (possibly more than one) follow from a parent quantum
theory. One may regard such an approach as a formulation of quantum mechanics in the sense
claimed by Vafa [6]: quantum corrections may depend on the observer, and semiclassical
expansions do not have an absolute, i.e., co-ordinate-free meaning.

A key point in our presentation is the interplay between quantum mechanics and geometry.
This bears out the notion that geometry is dynamical, i.e., it possesses physical degrees of
freedom. As such this idea is of course not new. The novelty of our approach is its manifestly
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non-perturbative character. As has been pointed out in [38–40], a non-perturbative approach
carries no background metric at all. Happily, this turns out to be the case in our approach
as well: rather than a metric-based quantum mechanics we have a metric-free quantum
mechanics. Metric-free theories usually go by the name of topological theories. The latter
have been studied in an approach to quantum gravity from a diffeomorphism-invariant
viewpoint [41]. This raises the exciting possibility that quantising gravity (outside the realm
of string theory) and rendering the notion of duality compatible with quantum mechanics
may be one and the same thing!

Acknowledgements

It is a great pleasure to thank Diego Bellisai, Kurt Lechner, Pieralberto Marchetti, Marco
Matone, Paolo Pasti, Dmitri Sorokin and Mario Tonin for interesting discussions. This work
has been supported by a Fellowship from Istituto Nazionale di Fisica Nucleare (Italy).

References

[1] L. Alvarez-Gaumé, F. Zamora, Duality in quantum field theory (and string theory). hep-th/9709180.
[2] J. Schwarz, Lectures on superstring and M-theory dualities, Nucl. Phys. Proc. Suppl. B 55 (1997) 1.
[3] A. Giveon, D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983.
[4] W. Taylor, The M(atrix) model of M-theory. hep-th/0002016.
[5] O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity,

Phys. Rev. 323 (2000) 183.
[6] C. Vafa, Lectures on strings and dualities. hep-th/9702201.
[7] A. Faraggi, M. Matone, The equivalence postulate of quantum mechanics, Int. J. Mod. Phys. A 15 (2000)

1869.
[8] G. Bertoldi, A. Faraggi, M. Matone, Equivalence principle, higher dimensional Möbius group and the hidden

antisymmetric tensor of quantum mechanics, Class. Quant. Grav. 17 (2000) 3965.
[9] V. de Alfaro, S. Fubini, G. Furlan, Conformal invariance in quantum mechanics, N. Cim. A 34 (1976) 569.

[10] S. Fubini, E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984) 17.
[11] E. Deotto, G. Furlan, E. Gozzi, A new superconformal mechanics, J. Math. Phys. 41 (2000) 8083.
[12] R. Britto-Pacumio, J. Michelson, A. Strominger, A. Volovich, Lectures on superconformal quantum

mechanics and multi-black hole moduli spaces. hep-th/9911066.
[13] C. Isham, A. Kakas, A group theoretic approach to the canonical quantization of gravity. 1. Construction of

the canonical group, Class. Quant. Grav. 1 (1984) 621.
[14] C. Isham, A. Kakas, A group theoretic approach to the canonical quantization of gravity. 2. Unitary

representations of the canonical group, Class. Quant. Grav. 1 (1984) 633.
[15] J. Klauder, in: M. Carmeli, S. Fickler, L. Witten (Eds.), Relativity, Plenum Press, New York, 1970.
[16] J. Klauder, E. Alaksen, Elementary model for quantum gravity, Phys. Rev. D 2 (1970) 272.
[17] I. Daubechies, J. Klauder, T. Paul, Wiener measures for path integrals with affine kinematic variables, J.

Math. Phys. 28 (1987) 85.
[18] G. Watson, J. Klauder, Generalized affine coherent states: a natural framework for quantization of metric-like

variables, J. Math. Phys. 41 (2000) 8072.
[19] F. Berezin, Sov. Math. Izv. 38 (1974) 1116.
[20] F. Berezin, Sov. Math. Izv. 39 (1975) 363.
[21] F. Berezin, General concept of quantization, Comm. Math. Phys. 40 (1975) 153.
[22] F. Berezin, Models of Gross–Neveu type as quantization of classical mechanics with nonlinear phase space,

Comm. Math. Phys. 63 (1978) 131.



J.M. Isidro / Journal of Geometry and Physics 41 (2002) 275–285 285

[23] J. Klauder, B.-S. Skagerstam, Coherent States, World Scientific, Singapore, 1985.
[24] A. Perelomov, Generelized Coherent States and their Applications, Texts and Monographs in Physics,

Springer, Berlin, 1986.
[25] E. Witten,(2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46.
[26] M. Kontsevich, Deformation quantization of Poisson manifolds. I. q-alg/9709040.
[27] M. Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35.
[28] A. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys.

212 (2000) 591.
[29] M. Schlichenmaier, Deformation quantization of compact Kaehler manifolds by Berezin–Toeplitz

quantization. math.QA/9910137.
[30] M. Schlichenmaier, Singular projective varieties and quantisation. math.QA/0005288.
[31] A. Karabegov, M. Schlichenmaier, Identification of Berezin–Toeplitz deformation quantisation. math.QA/

0006063.
[32] M. Schlichenmaier, Berezin–Toeplitz quantisation and Berezin transform. math.QA/0009219.
[33] A. Karabegov, M. Schlichenmaier, Almost Kähler Deformation quantisation. math.QA/0102169.
[34] G. Felder, B. Shoikhet, Deformation quantization with traces. math.QA/0002057.
[35] K. Yosida, Functional Analysis, Springer, New York, 1968.
[36] W. Rudin, Real and Complex Analysis, McGraw-Hill, London, 1970.
[37] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[38] A. Ashtekar, Lectures on Non-Perturbative Quantum Gravity, World Scientific, Singapore, 1991.
[39] A. Ashtekar, T. Schilling, Geometrical formulation of quantum mechanics. gr-qc/9706069.
[40] A. Ashtekar, Quantum mechanics of geometry. gr-qc/9901023.
[41] A. Ashtekar, D. Marolf, J. Mourão, T. Thiemann, Constructing Hamiltonian quantum theories from path

integrals in a diffeomorphism invariant context, Class. Quant. Grav. 17 (2000) 4919.


	The quantum mechanics of affine variables
	Overview
	Setup
	Summary
	Outline

	The holomorphic Fourier transformation (HFT)
	Quantum mechanics from the HFT
	The space of quantum states
	Position and momentum
	SL(2,R)-Transformation of the operators

	Discussion
	Non-isospectrality of the HFT
	The choice of a local vacuum
	The wave function on the boundary
	A topological quantum mechanics
	Classical vs. quantum

	Concluding remarks
	Acknowledgements
	References


